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A formal statistical analysis is presented of structural isomerism in a polymer chain having head-head, 
head-tail and tail-tail orientations of a directional monomer unit (regioisomerism). We derive general 
relations between the probabilities of regiosequences with up to seven elements (heptads), and treat 
explicitly Bernoullian and first-order Markov models for chain growth. We then illustrate our theory by 
analysing 188 MHz 19F n.m.r, spectra of two samples of polyvinylidene fluoride (PVF2) , Kynar 961 and 
Kureha KF-1100, and show that these polymers have regiosequence distributions which are described 
by first-order Markov statistics and not Bernoullian statistics. The implication is that the structural 
disorder in PVF 2 cannot be characterized accurately by a single parameter such as the 'percent of 
head-head, tail-tail defect content'. We find that the defect content in Kynar 961 is 5.0% and in Kureha 
KF-1100 3.7%, and that the appropriate reactivity ratio pairs for the first-order Markov model are 
r0=O.O03, rl =18 and r0=O.O03, rl =24, respectively. 

Keywords Head-head; head-tail; tail-tail; isomerism; sequence statistics; polyvinylidene fluoride; 
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I N T R O D U C T I O N  

Since the advent of high resolution nuclear magnetic 
resonance (n.m.r.) spectroscopy it has been possible to 
examine the microstructure of polymers in great detail. 
For example it is now a routine matter to determine the 
stereosequence distribution of homopolymers and the 
monomer sequence distribution of copolymers by this 
technique. Given the sequence distribution one can then 
formulate a statistical description of the chain growth 
process (e.g. Bernoullian, Markovian, etc.), and obtain a 
quantitative understanding of the influence of variables 
such as temperature and monomer feed ratio on polymer 
microstructurel. 

The statistical description of stereoconfigurational 
sequences (tacticity) in vinyl homopolymers has been 
formulated in two classic papers, by Coleman and Fox 
(1963) ! and Frisch, Mallows and Bovey (1966) 3. Likewise 
the theory of monomer sequence distributions in 
copolymers has been treated exhaustively by Price 
(1962) 4, Ito and Yamashita (1965) 5, and Pyun (1970) 6. 

In contrast, scant theoretical attention has been paid to 
another form of structural isomerism in polymers, namely 
regioisomerism, i.e. directional isomerism arising from 
head tail, head-head, and tail-tail additions of an 
asymmetrical monomer unit. Most polymers have a pure 
head tail regioregular structure. However polymers from 
certain fluoroethylenes and dienes are notable exceptions, 
and a proper understanding of regiosequence statistics is 
required for their structural analysis v. 

Although a statistical description of regiosomerism can 
be viewed as a special case of monomer sequence statistics 
for binary copolymers, there are subtleties which warrant 
the formal treatment given here. These aspects have often 
been overlooked in polymers examined previously owing 

to their small fraction (typically less than 0.1) of inverted 
monomer units, which makes certain regioirregular 
sequences very difficult to observe. We illustrate our 
treatment by a quantitative analysis of 19F n.m.r, spectra 
of polyvinylidene fluoride (PVF2), and show that the 
regiosequence distribution follows first-order Markov 
statistics, and not Bernoullian statistics as recently 
reported 8. 

DEFINITIONS AND STRUCTURAL NOTATION 

We restrict our attention to infinite linear chains con- 
structed from a vinylidene monomer M, which is 
directional by virtue of an asymmetrical arrangement of 
substituents about the double bond, as illustrated below. 

A x 
\ / 

M = C ~ C  
/ \ 

A X 

We do not consider stereoconfigurational isomerism, 
chain end effects, and branching, so the only structural 
defects involve regioirregular placements. According to 
conventional notation one end of M can be designated the 
'head' (e.g. =CX2), the other end the 'tail' (e.g. =CA2).  
Thus a sequence of M units may have 'head head' ( CX 2- 
CX2-), head-tail' ( CX2CA 2 ), or 'tail tail' (-CA2--CA 2 ) 
junctions v. 

By analogy with the established nomenclature for 
steroisomerism, we use the designations isoregic, 
syndioregic, and aregic for sequences in which the 
directional sense of successive monomer units is the same, 
alternating, and random, respectively. For convenience 
we represent the 'head' of M by 1 and the 'tail' by 0. 
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Table I List of  all possible n,ads for n ~< 7. The complement of 
Sn, obtained by interchanging O's and l 's, is denoted by Sn 

Regiosequence 

Length n s n ~-n 

1 0 1 

2 O0 11 
01 10 

3 001 110 
100 011 
101 010 

4 0010 1101 
0100 1011 
0011 1100 
1010 0101 
1001 0110 

01001 10110 
01010 10101 
10010 01101 
11010 00101 
10011 01100 
01011 10100 
11001 00110 

010010 101101 
010100 101011 
110100 001011 
100110 011001 
010110 101001 
110010 001101 
010011 101100 
010101 101010 
100101 011010 
110101 001010 
110011 001100 

0100110 1011001 
0010101 1101010 
0100101 1011010 
0010110 1101001 
0110010 1001101 
1010010 0101101 
1010100 0101011 
0110100 1001011 
0110011 1001100 
1010011 0101100 
1010101 0101010 
0110101 1001010 
1100110 0011001 
1010110 0101001 
1100101 0011010 

Consequent ly  an isoregic ( 'head tail') po lymer  has the 
regular b inary sequence . . . .010101010101 . . . . .  a 
syndioregic ( 'head head, tail tail') po lymer  has the 
sequence . . . .  011001100110 . . . .  , and an aregic polymer  
has an irregular sequence of 01 and 10 pairs 9. 

S E Q U E N C E  O C C U R R E N C E  P R O B A B I L I T I E S  
A N D  W I N D O W  P R O B A B I L I T I E S  
We assume that  the infinite sequences of O's and l 's  
described in the previous section are generated by some 
r andom process, and will investigate the statist ical  
propert ies  of finite segments  of these sequences. Since the 
infinite sequences are formed from 01's and 10's, not every 
finite segment can occur (e.g. 000 is forbidden). 

Let S, denote  the set of possible segments  of n O's and 
l 's, or n-ads, that  can occur. A typical n-ad will be denoted 
by s,. The members  of S~ . . . . .  S 7 are given in Table 1. It is 

A. Sloane 

simple to test if a part icular  n-ad x~x  2 . . .  x ,  (x i = 0  or 1) is 
in S,. If  it is then either all the pairs XlX 2, x3x4,  x s x 6 , . . .  
belong to the set {01,10}, or else all the pairs XzX3, x4"xs, 
x 6 x  v . . . .  belong to {01,10}. There  are two ways of dividing 
the n-ad into pairs, i.e. punctuat ing  it, and at least one of 
them must produce  01's and 10's if the n-ad is in S,. Most  
n-ads can be punctuated in only one way, i.e. they are 
unambiguous .  There are only two ambiguous  members  of 
each S,, namely  01010 . . . .  and 10101 . . . .  

It  is s t ra ightforward to see that  the number  of distinct n- 
ads in S, is: 

N ( S , ) = 2  k+2 - 2  if n = 2 k +  1 

or 

N(S,) = 3.2 k - 2 if n = 2k .  

These numbers  are given in Table 2 for n~< 10. 
We shall associate three different probabil i t ies with 

each n-ad s, = x l x  2 . . .  x , ,  all x i = 0  or 1. These are (i) the 
probabi l i ty  of occurrence of a punctuated n-ad x l x  2, 
x 3 x 4 , . . . ,  which will be denoted by ~(s,); (ii) the probabi l i ty  
of observing an unpunctua ted  n-ad through a window of 
length n placed r andomly  on the infinite sequence, 
assuming that  the direction of the sequence is known,  
which will be denoted by p(s,); and (iii) the probabil i ty  
Pobs(Sn) of observing an unpunctua ted  n-ad through a 
r andomly  placed window when the direction of the 
sequence is unknown.  These quantit ies will be defined in 
more  detail in what  follows. 

Our  basic assumpt ion  is t h a t t h e  sequences satisfy the 
following s tat ionari ty  condition. If 
X = . . . ,  X 1 X o , X l X 2 , X 3 X 4 , .  :. is one of our  
(punctuated) r a n d o m  sequences, then the probabi l i ty  that  
a part icular  n-ad s, = x lxz,x3x~, . . . ,  x , _  1 Xn (?7 even) occurs 
in X beginning in position t is independent  of t. In other 
words  we assume that  the probabili ty:  

Prob{X,  = x 1,X, + 1 = x2 . . . . .  X, +,_ 1 = x,} 

is a function 

=(x l x2 ,x3x  4 . . . . .  x . _  ~ x . ) =  =(s.) 

which is independent  of t. Thus g(s,) is the uncondit ional  
probabi l i ty  of  occurrence of the punctuated n-ad s,. There 
is then a natural  way to define g(s,) for any punctuated n- 
ad. For  example,  ~(1,10) = 7t(01,10), It(I,10,1) = 7r(01,10,10), 
and so on. 

If we examine a segment of length n f rom a sequence X, 
through a window of length n placed randomly  on the 
sequence, the n 0's and l ' s  seen through the window are 
equally likely to be punctuated like **, **, .. .  or like *, **, 
* . . . .  We therefore define the window probabi l i ty  p(s,) by: 

1 1 
p(X 1X2... Xn)=~7[(X 1X2,X3X 4 . . . .  ) +~n(X 1,X2X3,X4.. .). (1) 

Table2 The number N(s n) of possible n-ads 

n 0 1 2 3 4 5 6 7 8 9 10 

N(s n) 1 2 4 6 10 14 22 30 46 62 94 
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The probabilities p(s,) must satisfy various conditions, 
among which are: 

0 <<, p(s,) <~ 1, (2) 

and 

p(~.) = 1 (3) 

p(s,)=p(Os,)+p(ls,)=p(s,O)+p(s,1). (4) 

Without making any further assumptions we can now 
deduce the following properties of the window 
probabilities of monads (n = 1), dyads (n = 2), triads (n = 3), 
... etc. 

Monads. Since X is composed of 01's and 10's we have: 

1 
p(O) =p(1) =~. (5) 

Dyads. From (4) and (5) it follows that: 

p(O)=p(OO)+p(lO)=p(OO)+p(O1) 
=p(l)=p(O1)+p(ll)=p(lO)+p(ll) 

so that: 

p(OO)=p(ll) (6) 

p(00110) = p(10011)= p(0011), (16) 

p(01100) =p(11001) =p(1100), (17) 

p(OOl lO)+ p(lOl lO)=p(Ol lOO)+ p(Ol lO1) 

= p(01001) +p(11001) 

=p(10010)+p(10011) 

=p(0110), (18) 

p(OlOlO)+p(OlOll)=p(lOlO1)+p(O0101) 

=p(0101), (19) 

p(OlOlO)+ p(llOlO)=p(lOlO1)+ p(lOlO0) 

=p0010). (20) 

Similar, but increasingly more complicated identities hold 
for hexads, heptads . . . .  etc. 

The following conclusions may be drawn from these 
identities. We denote the complement of s, by g, (obtained 
by interchanging O's and l's), and the transpose by s* 
(obtained by reversing the order of the symbols) 8. The 
complement and transpose operations commute, so there 
is no ambiguity in writing 5*. Firstly, since (4) and (5) are 
symmetric in 0 and 1, any identity satisfied by p(s,) 
remains true if all sequences involved are complemented, 
e.g. (10) is transformed into (11). Secondly, we see that the 
'principle of sequence reversibility': 

and: p(s,)=p(s*) (21) 

p(O1)=p(lO)=~-p(ll). (7) 

Triads. Similarly from (4), (6) and (7) we obtain: 

p(OO1)=p(lOO)=p(Oll)=p(llO)=p(ll), (8) 

p(010) =p(101) 1 = ~ - 2 p ( l l ) .  (9) 

Tetrads. Equations (4), (8) and (9) imply that: 

p(0010) =p0011), (10) 

p(O 100) = p(1101), (11) 

p(0110) = p(1001)= p(0010)+ p(0011) 

=p(OlOO)+ p(l lOO)=p(l l), (12) 

p(OOlO)+ p(lOlO)=p(OlOO)+ p(OlO1) 

1 
- 2  2p(11). (13) 

Pentads. We state only the most important identities. 
From (4), (10), (11) and (12) we find: 

p(00101) = p(01011)=p(10010) = p(10110)-- p(0010), 
(14) 

p(01001) = p(01101)= p(;0100) =p(11010) = p(0100) 
(15) 

holds for n ~< 3, but need not hold for n ~>4, since in general 
p(0010) 4: p(0100). Thirdly: 

p(s,)=p(g*) (22) 

holds for n~<4, and for all pentads except that p(01010) 
need not equal p(10101). For n>~6 (22) need not hold (the 
failure of (19) and (20) in general is mentioned implicitly by 
Frisch et al.3). Conditions which ensure that (21) and (22) 
hold for all n will be given in Section V. 

SEQUENCE OBSERVATIONAL PROBABILITIES 

Since n.m.r, and other spectrometric techniques cannot 
determine the direction of a sequence, we define the 
unconditional probability of observing a sequence s, by: 

Pobs(S.)=p(s.)+p(s*), ifs,¢s*., (23) 

= p(s,), i f s ,=s , .  (24) 

Our goal is to use n.m.r, spectroscopy to estimate certain 
of the Pobs(S.), and from this to deduce information about 
the laws governing the formation of the polymer. 

Since n.m.r, spectral measurements depend on the 
signal from a given element which is influenced by a 
certain number (k say) of adjacent elements on each side, 
we can only m e a s u r e  Pobs(S.) when n = 2k + 1 is odd. When 
n.m.r, signals can be obtained from both O's and l's (as in 
the analysis of P V F  2 by 13C n.m.r.l°'ll), estimates of 
Pob~(Sn) c a n  be obtained for all s, of a given odd length 
(which is limited by the resolution of the probe). On the 
other hand, if only l's produce a signal (as in the present 
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A 3 /o,o\ 
A5 B 5 

IO[OI O0101 

/ \  / \  
A7 8 7 C 7 O 7 

0101010 0101011 IOOlOlO I001011 

I 

83 
e l f  / \  

c s D~ 
I0110 OOHO 

/ \  / \  
E7 F 7 G 7 H 7 

0 1 0 1 1 0 0  O l O I l O I  I 0 0 1 1 0 0  I001101 

Figure I Tree structure relating all observat ional ly dist inct 
1-centred regiosequences f rom monad to heptads  

analysis o f P V F  2 by 19 F n.m.r.), estimates are obtained for 
precisely half of the s,, namely those in which the middle 
element is a 1. For  the complementary  sequences ~,, 
Pobs(Sn) cannot be es t imated .  However,  if equat ion (22) 
holds, no information has been lost. 

We now express the observational probabilities in 
terms of the window probabilities for all the 
observationally distinct 1-centred sequences up to 
heptads. Every observationally distinct 1-centred 
sequence of length 2k+  1 is contained in precisely two 
such sequences of length 2k + 3, and so the total number  of 
such sequences of length n = 2k + 1 is 2 k. These sequences 
for k ~< 3 are shown in the tree given in Figure 1. 

Monads (k = 0). In this trivial case there is only one n.m.r. 
signal A~ from the monad 1. No  information is obtained, 
since: 

1 
Pobs(1) =p(1) = ~. (25) 

Pobs(Ds)=p(OOllO)+p(OllO0) , (31) 

and, from (13), (18) and (19), 

Pobs(A5} + Pobs(Bs)= Pob~(A3) = ~ -  2p{11) , {32) 

Pobs(Cs) + Pobs(Ds) = Pobs(B3) = 2p(11) . (33) 

(32) and (33) also follow from the tree structure in Figure 1. 

Heptads (k = 3). There are eight observationally distinct 
heptads (see Figure 1), and we have: 

Pobs(A 7) = p(0101010) , 

Pob~(BT) =p(0101011) + p(1101010) , 

eobs(CT) =p(1001010)+p(0101001) , 

Pob~(D7) =p(1001011)+p(1101001) , 

Pob~(ET)-=p(O011010) + p(0101100) , 

Pobs(FT) =p(0101101) +p(1011010) ,  

= 2p(0101101) , 

Pob~(GT) = p(1001100) + p(0011001) , 

= 2p(1001100) , 

eob,(H7)=p(lOOllO1)+p(lOllO01 ) . (34) 

The following identities can be easily proven: 

eobs(BT)  = Pobs(C7)  , 

and Pobs(ET)= Pob~(Hv) . (35) 

In any case we have: 

Pob~(A 7) + Pob~(B7)= Pobs(A s) , (36) 

Triads (k = 1). At the next higher level of resolution there 
are two n.m.r, signals (see Figure 1) corresponding to the 
events: 

Pobs(C7) + Pobs(D 7) = Pobs(B5) , 

Pobs(E7)-4- Pobs(Fv) = Pobs(Cs) , 

(37) 

(38) 

A 3 =010  , 

B3=011  

Then, from (8) and (9), 

o r l l 0  . 

Pobs(G7) + Pobs(H7)= Pobs(Ds) . (39) 

For  each value of k the values of Pobs(S2k+~ ) sum to 
1 

p(1)=~, as required. 

1 
Pobs(A 3) = p(010) = 2 -- 2p(11), (26) 

Pobs(B3)=p(Oll)+p(llO)=2p(ll  ). (27) 

Pentads (k = 2). If all pentads are resolved, there are four 
n.m.r, signals (Figure 1). Then, from (14) and (15), 

Pobs(As) =p(10101) , (28) 

Pobs(Bs) = p(00101) + p(10100) 

= p(0010) + p(0100) , (29) 

Pobs(Cs) = p(10110) +p(01101) 

= Pob~(Bs) , (30) 

S E Q U E N C E  F O R M A T I O N A L  PROBABILITIES  
W I T H  A F I R S T - O R D E R  M A R K O V  M O D E L  

The most widely applicable model for a binary 
copolymerizat ion of monomer  A with monomer  B 
involves a first-order Markov process, which is 
characterized by four condit ional  probabilities 7r(AIA), 
g(A[B), 7r(B]A) and rc(B]B), where g(i[/') is the probabili ty 
that the monomer  i is followed by the monomer  j (note 
that this is the reverse of the usual mathematical  notat ion 
for condit ional  probabilities~2). 

In the present instance we assume that regiosequences 
are generated by a 'copolymerizat ion'  of the two 
monomers  '01' and '10'. Thus there are four ways in which 
the chain can growT: 
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- 0 1  + 0 1 - , ' - 0 1  
- 0 1 + 1 0 ~ - 1 0  
- 1 0 + 0 1 - * - 0 1  
- 1 0 + 1 0 ~ - 1 0  

For simplicity, we set: 

probability 
x(OllO1) 
.(o111o) 
rc00[01) 
~(lOIlO) 

rate constant 
kl l  
k lo  
kol  
koo 

Then x,y  can be determined from ~,//by: 

1 .~ 
x = ~(a _+ x /a  - 4fl) , 

1 _ 
y = ~(:¢ + x/~ - 4fl) • 

(42) 

(43) 

~(01ll0)=x, rc(10101)=y , 
We find that: 

so that x ( 0 1 D 1 ) = l - x  and ~ ( 1 0 ] 1 0 ) - l - y .  Our 
stationarity assumption implies that x and y satisfy: 

x(O1 ,) = 7r(01,)(1 - x )  + ~ ( 1 0 , ) y  , 

~r(lO,) = rt(O1,)x + rr(lO,)(1 - y) , 

and, since g(01,)+rr(10,)= 1, we find that: 

~ ( 0 1 , ) =  3 ~ '  , ~ ( 1 0 , ) -  x ( 4 0 )  
x + y  x + y  

The conditional probabilities, rate constants and 
concentrations of reacting species (enclosed within square 
brackets) are related by4: 

X = 
k l o [ - 0 1 ] [ 1 0 ]  

kl lE-01J[01.]  +k loE-01]E10]  , 

kol [ - 10] [01] 
y ----- 

ko[ [ -  103 E0l ] - t - k o o [ -  103[103 

PobdA 7) =p(0101010) 

1 1 
= ~rt(01,01,01,01) + ~n(10,10,10,10) 

- ~  x 3~(1  - x,3 + 12 x@y( l  -Y,3 

= ~ ( l + 3 f l _ ~ f l + 2 ~  z 6~3/ , (44, 

and similarly: 

PobdBv) = Pobs(C7) = 1 - - ~  --  fi -F f f  , (45) 

pou,o ,: (1 ,46, 

pou~(E7) = pobs(HT)= ~ (  1 _ 2 ~ ) .  (47) 

Pobs(Fv) = ~(1 -- ~ + fl) , (48) 

In terms of the reactivity ratios 13. 
Pob~(GT) = - -  . (49) 

koo kl  1 
r O - k o  I , r I - k l  ° , 

The expressions for pentads and triads are then 
obtained from (36)-(39) and (32), (33): 

and using [01] = [10]. these formulas reduce to: z \  / 

X = - -  
1 l 

and y =  (41) 
1 + r  I 1 + r  o 

(51) 

With this model it is straightforward to prove that the 
'principle of sequence reversibility' (equation 21) holds for 
all n if and only if x = y. This condition is analogous to the 
steady-state assumption for binary copolymerization 13 
which states that the rates of interconversion between the 
two growing chain terminii (i.e. - 0 1  and - 10) are equal. 
We also note that equation (22) is always true for a first- 
order Markov model, as well as the simpler zeroth-order 
Markov or Bernoulli model, for which x + y = 1. 

The sequence observational probabilities may now be 
expressed in terms o fx  and y, beginning with the heptads. 
Since the resulting expressions are symmetric functions of 
x and y, it is convenient to set: 

Pobs(D5) = fl 2 , (52) 

Pobs(A3)=~- ~- , (53) 

eob,(B3) = fl- . (54) 

From (26) we note: 

p{l l )=~.  (55) z ~  

o ~ = x + y  , 

f l = x y  . 
The pentad relations (50)-(52) have been derived by 
Wilson using a different notation 14. 
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A,  

h' 7 

/ I ~, 
J-/l'i 

v 
1167 ×~© 

1 1 1 1 [ 1 1 1 
90 IOO 410 120 

{ppm) 

Figure 2 188.22 MHz 19F n.m.r, spectrum of polyvinyl idene 
f luoride (Kynar 961) at 50°C in d imethy l formamide~'  7. Other 
experimental condit ions and identif ication of  the peaks are given in 
the tex t  

For the Bernoullian model the conditional 
probabilities ~(i[j) are independent of i, so that x + y = 1 
and c~= 1 , /~=x(1 -x ) .  This model has been applied to 
heptad data obtained by Ferguson and Brame from the 
19F n.m.r, spectrum of PVFz, 8 but as we show in the next 
section a first-order Markov model is more appropriate. 
In any case resolution of the two triad peaks A 3 and B 3 is 
sufficient to solve for the Bernoulli model, since estimates 
for/~ are then directly obtained (from (53), (54)). 

For the first-order Markov model resolution of triads 
gives only the ratio/~/c~, and so pentads must be resolved 
in order to estimate x and y, and hence r o and r~. If 
heptads are resolved, then one can test for any deviation 
from the first-order model, and if necessary fit a second- 
order model (which requires the specification of four 
reactivity ratios4). 

It should be pointed out that there is always an 
ambiguity in our equations, which only give information 
about the symmetric functions e and/~, from which x and 
y must be derived according to (42) and (43) with an 
ambiguity of sign. This ambiguity exists because our 
observations do not discern the direction of chain growth. 
Once this direction is specified, then only one solution for 
x and y is admissable. 

APPLICATION TO POLYVINYLIDENE 
FLUORIDE 

We illustrate the foregoing theory by an analysis of 19F 
n.m.r, spectra of PVF 2. Two representative samples were 
chosen: Kynar 961 manufactured by the Pennwalt 
Corporation, and Kureha KF- l l 00  manufactured by 
Kureha Chemical Industry Company. They were 
observed as 8~o solutions by weight in dimethyl- 
formamide-d 7 or dioxane-d 8 on a Varian XL-200 
spectrometer operating at 188.22 MHz for 19F. 

Initially several PVF z samples (both commercial and 
from our laboratory) were examined in the solvents 
dimethylformamide, dioxane, acetophenone and hexa- 
methylphosphoramide at various temperatures from 
17 ° to 160°C) to determine suitable conditions for the 
experiment. Some PVF 2 samples, notably those .with 
low molecular weight, gave anomalous peaks (see later), 
and therefore were unsuitable for this work. Both Kynar 
961 and Kureha KF-1100 are satisfactory in this regard. 
Best resolution of  regiosequence heptads was achieved 

A. S/oane 

with the solvent dimethylformamide, but the relative 
spacing of these heptads was temperature dependent. Low 
temperature particularly favoured the separation of peaks 
A 7 and B 7, but as we show later, a reliable estimate of 
Pobs(AT) and Pobs(BT) could not be obtained using the" 
solvent dimethylformamid e. Dioxane was the preferred 
solvent in this regard. For these preliminary trials protons 
were decoupled from fluorine nuclei for optimum 
resolution to aid in peak identification. 

The final experimental conditions for acquiring 19F 
n.m.r, spectra were carefully chosen to ensure quantitative 
measurements. An interval of 15 s (well in excess of 5T 0 
separated 90 ° (9.0 /ts) pulses to allow all 19F 
magnetization to return to equilibrium, thereby avoiding 
potential distortion of relative peak intensities from 
differential spin-lattice relaxation times (T~ s), which range 
from 0.39 to 0.46 s at 21,1 kG ~°. Likewise the problem of 
differential nuclear Overhauser enhancement factors did 
not arise because protons were not irradiated at 200 MHz 
as required during decoupling from the observed fluorine 
nucleus. The spectral sweep width was 12 kHz (1.33 s 
acquisition time) with 32 K data points, and 1000-3000 
transients were accumulated to ensure an adequate 
signal-to-noise ratio for even the weakest peaks (DT,FT). 
The detection limit is 1 part in 10000. A floating point 
Fourier transform of the time domain data was 
performed, with a minimal digital line broadening of 0.05 
Hz. 

Peak areas, proportional to Pobs(S7) , were determined 
by expanding individual resonances on a scale of 24 
Hz/cm and tracing the peaks, which were then cut out and 
weighed. Four  spectra were recorded independently with 
different batches of Kynar 961 under identical conditions, 
and were exactly superimposable. Repeat weighings of a 
given peak were reproducible to ___0.01~o. The only 
significant source of error lay in the cutting-out procedure 
owing to a slight degree of arbitrariness in separating 
overlapping peaks (notably E 7 from FT, and G 7 from H7). 

The entire 19F n.m.r, spectrum of PVF 2 dissolved in 
dimethylformamide is shown in Figure 2, with detailed 
expansions of the A 3 and B 3 regions in Fiyures 3 and 4, 
respectively. The heptads Av-H 7 are indicated on these 
spectra. The assignments follow those given by Ferguson 
and Brame 8, and have been the subject of recent 

A7 B7 

'I 
L 

\ 
C7 

D7 

x l O  

L_ t I I I I I 
90  91 92 93 94 95 96 

¢,(ppm} 

Figure 3 Detailed expansions of 19F resonances derived f rom the 
A 3 sequence (010) in Kynar 961 observed at 18°C. Other condi- 
t ions are the same as for Figure 2. Note that at this lower tempera- 
ture the peak B 7 is slightly better separated f rom A- / than  in 
Figure 2. Peak areas were measured at the fo l lowing vertical 
ampl i f ica t ions:A7,  X1;BT,  X l 0 ;  C7, X10;and D?, XS0 
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theoretical calculations of Tonelli et al. ~ 5 In some PVF 2 
spectra obtained in dimethylformamide we have detected 
anomalous t9~, resonances at 95,32, 97.47, 98.88, 107.17, 
109.92 and 114.15 ppm. Certain of these resonanCes can be 
seen in the spectra published by Ferguson and Brame s, 
and Liepins et alJ 6 We have determined that several of 
these peaks relax more slowly than the main peak AT, and 
therefore are probably associated with mobile end groups 
and oligomeric residues. In one report these peaks, as well 
as multiplicity from long-range homonuclear spin 
coupling and probable spinning side-bands, have been 
incorrectly attributed to fine structure from sequences 
longer than heptads (i.e. four or more monomer units) ~ ~. 
Care must be taken to differentiate the anomalous peak at 
114.15 ppm (marked X in Figure 4) from FT, as these peaks 
have similar intensities. 

Chemical shifts for the eight individual heptads AT-H 7 
are given in Table 3, with estimates for the corresponding 
values of Pob~ (S 7) for both polymers as measured in 
dimethylformamide. An internal check on these results is 
given by equation (35), which states that 
Pob,(BT) = Pob,(C 7) and Pob,(ET) = Pob,(Hj no matter what 
statistical law governs the chain growth process. 
Similarly, according to equations (30), (37) and (38), 

E7 

i g 
,1' 

k t 

/~7 
G7 

F7 I 

xlO 

I I ) j 
112 113 tl4 115 116 It7 

~(ppm) 

Figure 4 Detailed expansions of  19F resonances derived f rom the 
B 3 sequence (011 ) in Kynar 961 observed at 18°C. Other conditions 
are the same as for  Figure 3. X = probable end-group resonance 
(note well-resolved spin-coupling mul t ip l ic i ty  on this peak). Peak 
areas were measured at the fo l lowing vertical amplif ications: 
ET, X l 0 ;  FT, X50; GT, X50; and HT, X10 

Pob~(C7)+ Pob~(DT)=Pobs(ET)+ Pobs(FT). The last two 
identities are satisfied by the present results to within the 
experimental error, but we find unexpectedly that Pobs(BT) 
is nearly 50% larger than Pobs(CT). 

The exaggerated value of Pobs(B7) is an artifact caused 
by the solvent dimethylformamide. Figure 5 shows a 
detailed expansion of the A 3 region observed at 90:C in 
dioxane-d 8. Under these different conditions the heptads 
shift relative to each other and have chemical shift values 
as follows: AT, 89.88; B 7, 89.05; C 7, 94.62; D 7, 93.91; E 7, 
112.24; F 7 and G 7, not resolved; and H 7, 114.48 ppm. Two 
new peaks appear on the high-field shoulder ofA 7 at 90.63 
and 91.23 ppm (Figure 5), with a combined probability 
equal to Pobs(BT)--Pobs(CT) as measured for solutions in 
dimethylformamide (Table 3). Clearly these new peaks 
overlap with B 7 when the solvent is dimethylformamide. 
Their probability is too high to be associated with end 
groups (both Kynar 961 and Kureha KF-1100 have 
molecular weights in excess of 60 000), but too low to be 
nonad fine structure (i.e. B 9 = 101010100). However they 
must be derived from the A 7 sequence so we have included 
their area in the correct estimate for Pob~(A 7). 

Tables 4 and 5 give the correct measured values for all 
Pob,(s7) for Kynar 961 and Kureha KF-1100, respectively. 
The values for Pob,(Aj and Pob~(BT) were measured from 
spectra obtained in dioxane solution, and the remaining 
probabilities were measured from spectra obtained in 
dimethylformamide solution, where the heptads F 7 and 

/< 
A7 
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Figure 5 Detailed expansions of 19F resonances derived from the 
A 3 sequence (010) in Kynar 961 observed at 90°C in dioxane-d 8. 
Other conditions are the same as for Figure 3. The two peaks at 
90.63 and 91.23 ppm seen here are hidden under B 7 in Figure 3, 
where they exaggerate the measured value of Pobs (BT) 

Table 3 Chemical shifts for the heptads observed in the I9F n.m.r, spectra of PVF 2 in dimethylformamide-d? and the corresponding Pobs 
values. The values of Pobs (AT) and Pobs (BT) are underestimated and overestimated, respectively (see text) 

Pobs ~ 

Heptad Sequence* • (ppm)t ±0.05 Kynar 961 Kureha KF-1100 

,/17 0101010 91.31 0.393 +- 0.004 0.421 ± 0.004 
B7 0101011 91.79 0.031 +_ 0.001 0.022 _+ 0.001 
C7 1001010 94.43 0.023 ± 0.001 0.018 -+ 0.001 
D7 1001011 95.37 0.00130 +_ 0.00005 0.00080 -+ 0.00005 
E7 0101100 113.33 0.024 -+ 0.001 0.018 ± 0.001 
F7 0101101 113.62 0.0004 -+ 0.00008 0.0001 +- 0.00005 
G7 1001100 115.34 0.0040 _+ 0.0005 0.0020 +_ 0.0005 
H7 1001101 115.76 0.023 + 0.001 0.018 ± 0.001 

* 0 = CH2, 1 = CF 2 
f At 18°C in dimethylformamide-d 7 with internal hexafluorobenzene reference assigned 163.00 ppm 
:[: Mean values from four independent trials. The errors arise solely from the imprecision of cutting out peaks. Note that Pobs values are 
normalized to Ya as required by (25) 
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Table 4 Comparison of measured Pobs (Sn) values for  heptads and 
pentads wi th those calculated fo r  a first-order Markov model wi th 
c~ = 1.049 and/3 = 0.0522 for  Kynar 961 

Measured Pobs (Sn) Calculated Pobs (Sn) 

n = 7  n = 5  n = 7  n = 5  

A 7 = 0 . 4 0 0  A s = 0 . 4 2 4  A 7  = 0 . 4 0 4  A 5 = 0 . 4 2 7  
B 7 = 0 .024  B 7 = 0 . 0 2 2  

C 7 = 0 . 0 2 2  B 5 = 0 .023  C 7 = 0 . 0 2 3  B 5 = 0 . 0 2 4  D 7 = 0 . 0 0 1 3  
D 7 = 0 . 0 0 1 3  

E 7 = 0 .024  C 5 = 0 .024  E 7 = 0 .024  C 5 = 0 .024  F7 0 . 0 0 0 2  
F 7 = 0.0004 ' = 

G- t = 0.0040 D s = 0.027 G7 = 0.0026 D s = 0.026 
H 7 = 0.023 H 7 = 0.024 

o r  

x =0.052, y=0.997 , (57) 

for Kynar 961, and 

o r  

X =0.997, y=0.040 , (58) 

X =0.040, y=0.997 , (59) 

for Kureha KF-1100. 
It is generally accepted for VF 2 polymerization that the 

propagating radical structure is more likely - C H  2' than 
-CH2',  14 so the appropriate solutions are (57) and (59). 
Thus: 

G 7 a r e  better resolved. These values are used to derive the 
statistical law governing the formation of PVF z. 

The simplest statistical law for chain growth is zeroth- 
order Markov or Bernoulli, for which ~ is unity. If this law 
is applicable we find from (46), (48) and (49) that: 

pob,(DT) = Pob,(FT) = Pobs(G7) = f12 , 

and, from (45) and (47), 

Pobs(BT)=Pobs(ET)= fl(~-fl)" 

Similarly at the pentad level we find: 

Pob,(Bs) = Pob,(Cs)= Pobs(Ds)=~ • 

These identities are not satisfied by either our 
observations (Tables 4 and 5) or those reported by 
Ferguson and Brame 8. Clearly the regiosequence 
distribution in PVF z cannot be described accurately by 
Bernoullian statistics. 

Tables 4 and 5 show that the Pobs(Ss) values obtained 
according to (36)-(39) are described by a first-order 
Markov model with cc = 1.049 and fl =0.0522 for Kynar 
961, and c~ = 1.037 and fl = 0.0398 for Kureha KF-1100. As 
previously noted, pentad data can always be described by 
a first-order Markov model, while the appropriateness of 
this model can only be tested by heptad or longer 
sequence probabilities. Likewise the heptad data could be 
modelled by a second-order Markov model or any 
statistical model with four or more adjustable parameters, 
but it is unnecessary to pursue these higher-order models 
since the present data show that the first-order Markov 
model is appropriate. 

Tables 4 and 5 show that the Pobs values for two heptads, 
namely Fv, and GT,  deviate slightly from a first-order 
Markov model within the precision of our measurements. 
The apparent deviation of F v and G 7 may not be 
significant, because the absolute error in their 
probabilities is certainly much larger than for other 
heptads, since these two weak peaks are partially 
overlapped by more intense neighbours. 

Given that a first-order Markov model is physically 
reasonable, we can solve for x and y, and hence r o and r 1 
from (42), (43) and (41). The solutions are either: 

X =0.997, y=0.052 , (56) 

ro = 0.003, q = 1 8 ,  (60) 

for Kynar 961, and 

r0 =0.003, r1=24 , (61) 

for Kureha KF-1100. 
Throughout the literature on PVF 2 the polymer 

structure has been characterized by the 'per cent head-  
head, tail-tail' addition. This is simply 100 (p(l 1)+ p(00)), 
which is equal to 100 Pobs(B3) according to (27) and (6). 
Thus the per cent 'head-head', tail-tail' additions for 
Kynar 961 and Kureha KF-1100 are 5.0 and 3.7, 
respectively. This is the same as the 'per cent inverted 
monomer units', or 100 ~(10), as given by equation (40). 
This number cannot characterize the sequence 
microstructure of PVF 2 however except in the case of 
'single parameter' Bernoullian statistics, which we have 
shown to be inapplicable in the present instance. The 
microstructure of PVF 2 is described instead by a 'two- 
parameter' first-order Markov model. Both Kynar 961 
and Kureha KF-1100 are products of a free-radical 
addition polymerization, but, because of its higher defect 

.,content, the Kynar 961 must have been prepared at 
significantly higher temperature than that employed for 
the Kureha KF-1100. 

PVF z provides the best example for illustrating 
regioirregular sequences in homopolymers, since it does 
not involve the stereoconfigurational irregularity that 
complicates the analysis of other fluoropolymers such as 
polyvinyl fluoride and polytrifluoroethylene. However, 
since PVF 2 has few defects, its n.m.r, analysis is not a 
routine experiment and may be likened to the task of 
determining reactivity ratios for a copolymer having only 
5% of one type of monomer unit. This is partially offset by 

Table 5 Comparison of measured Pobs (Sn) values for  heptads and 
pentads wi th  those calculated for  a first-order Markov model wi th 

= 1.037 and/3 = 0.0398 for  Kureha KF-1100 

Measured Pobs (Sn) Calculated Pobs (Sn) 

n = 7  n = 5  n = 7  n = 5  

A ? = 0.424 A 5 = 0.443 A 7 = 0.426 A 5 = 0.443 
B 7 = 0.019 B 7 = 0.018 

C 7 = 0.018 B 5 = 0.018 C7=0"018  B 5=0 .018  D 7=0 .0008  
D 7 = 0.0008 

E7=0"018  C 5=0 .018  E7=0"018  C5=0 .018  
F 7 = 0.0001 F 7 = 0.0001 

G 7 = 0.0020 D 5 = 0.020 G7 = 0.001 6 D 5 = 0.020 
H 7 = 0.01B H 7 = 0.018 
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the  sens i t iv i ty  of  the  19F nuc leus  to  its s t ruc tu ra l  
e n v i r o n m e n t ,  so tha t  r e g i o s e q u e n c e  hep t ads  can  be 
d i sce rned ,  wh ich  a l lows  one -  and  t w o - p a r a m e t e r  
s ta t i s t ica l  m o d e l s  to  be tested.  
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